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Distortion of upstream disturbances
in a Hiemenz boundary layer
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A theoretical analysis of the distortion of unsteady three-dimensional disturbances in
a Hiemenz boundary layer and its effect on the heat transfer enhancement is presented.
It is shown that the disturbance length scale is a critical parameter in determining the
amplification ratio of the incoming vorticity. For large disturbance length scales, the
amplification ratio increases when the length scale decreases, and a maximum value
occurs at a length scale close to five times the boundary-layer thickness. The un-
steadiness of the disturbances is found to reduce the vorticity amplification, but the
effect is second order when the frequency is low compared to the mean flow strain rate.
The impinging disturbances induce large-amplitude vorticity of opposite sign at the
wall whose magnitude controls the heat transfer enhancement. As an application of
the present analysis, a new scaling correlation is derived for stagnation-point heat
transfer in the presence of free-stream turbulence. The theoretical correlation,
expressed in terms of turbulence intensity, integral length scale and mean flow
Reynolds number, agrees reasonably well with recent experimental data.

1. Introduction
The study of fluid flow and heat transfer at a perturbed two-dimensional forward

stagnation point provides an improved understanding of the effects of free-stream
turbulence in a wide range of engineering problems. In a modern gas turbine engine,
for instance, the gas flow exiting the combustor contains high levels of turbulence
which cause significant enhancement of heat transfer to the downstream turbine
blades (Goldstein 2001), the effect being most severe in the stagnation-point region
near the blade leading edge. Efforts to improve the thermal efficiency and reliability
of the blade cooling system hinge critically upon an accurate prediction of heat
transfer in the presence of free-stream turbulence. Stagnation-point flow also plays
an important role in other industrial applications such as material processing and
electronics cooling (Nakayama 1995).

Over the years, a number of experiments have investigated the heat transfer en-
hancement over its laminar value in stagnation-point flows in the presence of free-
stream turbulence (see Kestin 1966; Sadeh & Brauer 1980; Van Fossen, Simoneau &
Ching 1995; Ames 1997). The turbulence intensity, length scale and the mean flow
Reynolds number were shown to be the most important parameters in determining
the turbulent heat transfer rate. Typically, the heat transfer enhancement was found to
increase with increased Reynolds number and turbulence intensity, but decrease with
increased turbulence length scale. Semi-empirical correlations have been proposed to
predict the heat transfer enhancement (see for example Smith & Kuethe 1966; Van
Fossen et al. 1995; Ames 1997). Numerical simulations have also been performed to
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study the detailed interaction between free-stream turbulence and a stagnation-point
boundary layer. Spalart (1989) found that out of initial white-noise disturbances in
a swept Hiemenz boundary layer, the most unstable disturbance-mode is the one
that has the same similarity form as the mean Hiemenz flow, i.e. the streamwise
velocity is a linear function of the streamwise coordinate x, and the wall normal
velocity is independent of x. The flow structures induced by free-stream turbulence in
a stagnation region are found to be qualitatively similar to those induced by upstream
organized disturbances (Xiong & Lele 2001). The importance of the disturbance length
scale has been shown recently through direct numerical simulation of a turbulent
stagnation point flow by Bae, Lele & Sung (2003).

The effect of temporal modulation of free-stream velocity was first studied
theoretically by Lighthill (1954) who obtained the Stokes-layer corrections for skin
friction and heat transfer for a two-dimensional pulsating mean flow about a cylinder.
The steady streaming (second-order alteration to the mean flow owing to the
Reynolds stresses) in an oscillatory Hiemenz boundary layer was further examined by
Grosch & Salwen (1982) and Merchant & Davis (1989), but the emphasis is on
finding similarity solutions and the modification to skin friction. The enhancement
of heat transfer in a perturbed Hiemenz boundary layer was also conceived as
a consequence of flow instability induced by the incoming disturbances. However,
Kestin & Wood (1970) found (later, clarified by Wilson & Gladwell 1978), that the
two-dimensional Hiemenz boundary layer is always linearly stable to the incoming
three-dimensional disturbances. The nonlinear instability was studied by Lyell &
Huerre (1985) who showed that if the level of the external disturbances exceeds a
certain threshold value, Hiemenz flow can be destabilized. The linear instability for
the more general attachment-line boundary-layer flow has also been investigated by
Lin & Malik (1996) and Theofilis et al. (2003). Morkovin (1979), in a comprehensive
review, argued that the enhancement of heat transfer is more likely to be a forced
response to the upstream disturbances rather than a result of internal flow instability.
The flow visualizations by Nagib & Hodson (1978) and Böttcher & Wedemeyer (1989)
strongly support this argument. This viewpoint was advocated earlier by Sutera (1965)
who analysed the amplification effect of the mean flow on the incoming disturbances
and linked them to the sensitivity of heat transfer to upstream vortical distur-
bances. By generalizing the classical rapid distortion theory (RDT) (Batchelor &
Proudman 1954), Hunt (1973) analysed the second-order moment of the turbulent
velocity field when the free-stream turbulence, of either very large or very small
integral scales, impinges onto a circular cylinder, but the heat transfer between the
fluid and the cylinder was not considered. Dhanak & Stuart (1995) showed that, in
the forward stagnation region of any two-dimensional body, the viscous boundary
layer can support a substructure of counter-rotating streamwise eddies when there
exists weak cross-stream vorticity in the external flow. Kerr & Dold (1994) obtained
a family of strained periodic vortex arrays embedded in an inviscid two-dimensional
stagnation-point flow. Andreotti, Douady & Couder (2001) have recently used these
vortices as a model to study experimentally the dynamics of interaction between
strain and vorticity. Although much progress has occurred in understanding the
heat transfer augmentation mechanism, there is, to our knowledge, no analytical
solution to the impinging vortical disturbances in a viscous Hiemenz boundary layer.
Theoretical analysis on the effects of length scale, intensity and frequency of the
impinging disturbance and the associated heat transfer has been lacking. This is
partly the reason that the prediction of stagnation-point heat transfer in the presence
of free-stream turbulence has largely remained empirical. In this paper, the distortion
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Figure 1. (a) Disturbed stagnation-point flow at the leading edge of a two-dimensional bluff
body. (b) Hiemenz boundary-layer flow with upstream incoming disturbances.

of unsteady three-dimensional disturbances in a two-dimensional stagnation- point
flow is investigated using theoretical analysis and numerical solutions. Our objective
is to gain quantitative understanding of the heat transfer augmentation mechanism,
particularly its dependence on disturbance parameters, e.g. length scale, intensity
and frequency, as a way to improve the prediction of turbulence effects in this
technologically important flow.

The paper is organized as follows. The governing equations for the mean flow
and the disturbances are formulated in § 2, followed by a discussion of the length
and velocity scales associated with the disturbances. The numerical solutions of
the nonlinear disturbance equations, showing the characteristics of the disturbance
development, are presented in § 3. Analysis based on linear vortex dynamics is pursued
in § 4 to derive the dependence of vorticity amplification on the disturbance length
and time scales. In § 5, the asymptotic behaviour for large-scale and low-frequency
disturbance is discussed, along with its implications for the wall heat transfer. By
superposing different modes of upstream disturbance, the analysis is extended in
§ 6 to treat the case of homogeneous isotropic free-stream turbulence. A new heat
transfer scaling correlation based on the turbulence intensity, integral length scale and
Reynolds number is proposed and compared with recent experimental measurements.
The conclusions of the present study and a discussion is given in § 7.

2. Governing equations
We consider unsteady incompressible viscous flow with constant fluid properties

in the forward stagnation region of an arbitrary two-dimensional bluff body shown
in figure 1(a). The coordinate axes are chosen as follows: x is parallel to the body
and normal to the attachment line, y along the free stream away from the body, and
z along the attachment line. The mean flow around the bluff body is assumed to
be steady and two-dimensional, but the incoming disturbances are three-dimensional
and may vary with time. The length scale of the disturbances is assumed to be large
compared with the boundary-layer thickness, but much smaller than the diameter of
curvature at the stagnation point, hence the mean flow in this region is modelled well
by a plane Hiemenz boundary-layer flow, see for example in Batchelor (1967). Indeed,
Wilson & Gladwell (1978) showed that as Reynolds number Re → ∞, the laminar
flow in the stagnation region of any two-dimensional bluff body is reduced to a plane
Hiemenz flow problem. Exploiting this reduction, the present analysis will be focused
on the Hiemenz boundary-layer flow in the presence of upstream disturbances, as
shown in figure 1(b). By relating the strain rate in the Hiemenz solution to the
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free-stream velocity and the diameter of curvature at the stagnation point, the present
analysis applies to a general two-dimensional bluff body.

When the characteristic length scale l0 and velocity scale v0 of the Hiemenz
boundary layer, defined as

l0 =
√

ν∗/A∗, u0 =
√

ν∗A∗, (2.1)

are used to non-dimensionalize the coordinates and the flow variables, we have

(ξ, η, ζ ) =

(
x∗

l0
,
y∗

l0
,

z∗

l0

)
, (2.2a)

(ũ, ṽ, w̃) =

(
u∗

u0

,
v∗

u0

,
w∗

u0

)
, (2.2b)

ρ̃ =
ρ∗

ρ∗
∞

= 1, p̃ =
p∗

ρ∗
∞u2

0

, (2.2c)

θ̃ =
T ∗ − T ∗

w

T ∗
∞ − T ∗

w

, (2.2d)

where the superscript ∗ is used here in after to denote the dimensional quantities, ν∗

is the kinematic viscosity and A∗ is the strain rate of the external potential flow in
the Hiemenz solution. p∗ and ρ∗ are the pressure and density. The wall is assumed to
be isothermal with temperature T ∗

w and the upstream flow temperature is T ∗
∞.

The flow field {ũ, p̃, θ̃} is assumed to consist of a plane stagnation point flow
{U, P , Θ} and a unsteady disturbance field {u, p, θ}, i.e.

ũ = U + u, p̃ = P + p, θ̃ = Θ + θ, (2.3)

Following Batchelor (1967), the mean velocity U of Hiemenz flow may be expressed
as

U = (U, V, W ) = (φ′ξ, −φ, 0). (2.4)

Together with the mean temperature Θ , they satisfy the following Hiemenz equations

φ
′′′

+ φφ
′′
+ 1 − φ′2 = 0, (2.5a)

Θ ′′ + PrφΘ ′ = 0, (2.5b)

where φ is only a function of η and ′ denotes d/dη. Pr is the Prandtl number. The
boundary conditions for φ and Θ are given by

φ(0) = φ′(0) = 0, φ′(∞) = 1, (2.6a)

Θ(0) = 0, Θ(∞) = 1. (2.6b)

The general governing equations for the perturbation field, following from (2.1) and
(2.3), can be written as

∇ · u = 0, (2.7a)

∂t u + u · ∇u + U · ∇u + u · ∇U = −∇p + ∇2u, (2.7b)

∂tθ + u · ∇θ + U · ∇θ + u · ∇Θ =
1

Pr
∇2θ. (2.7c)

In this paper, perturbations of the form

u = {u(η, ζ, t)ξ, v(η, ζ, t), w(η, ζ, t)}, p = p(η, ζ, t), θ = θ(η, ζ, t),
(2.8)
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are considered; the perturbation variables have no ξ - dependence except for the
ξ -component of u. As noted by Spalart (1989), this is a good approximation to the
flow field in the neighbourhood of the stagnation (η, ζ )-plane. Steady perturbations
of this form were also used by Sutera (1965). Substituting (2.8) into (2.7) yields the
governing equations for the perturbation field:

u + v′ + ∂ζw = 0, (2.9a)

∂tu + (u2 + vu′ + w∂ζu) − φu′ + vφ′′ + 2uφ′ = u′′ + ∂2
ζ u, (2.9b)

∂tv + (vv′ + w∂ζv) − (φv)′ = −p′ +
(
v′′ + ∂2

ζ v
)
, (2.9c)

∂tw + (vw′ + w∂ζw) − φw′ = −∂ζp +
(
w′′ + ∂2

ζ w
)
, (2.9d)

∂tθ + (vθ ′ + w∂ζ θ) + vΘ ′ − φθ ′ =
1

Pr

(
θ ′′ + ∂2

ζ θ
)
. (2.9e)

Note here that the prime denotes the partial derivative ∂/∂η. The disturbance vorticity
may be conveniently found as

ωξ = w′ − ∂ζ v, ωη = ξ∂ζu, ωζ = −ξu′. (2.10)

As will be seen in subsequent discussion, the disturbance vorticity in ξ direction
ωξ , which is subject to stretching by the mean diverging flow, plays a central role
in describing the disturbance evolution in this type of flow. Hence, the governing
equation for streamwise vorticity, here in after denoted by ω, is written as

∂tω −
(
ω′′ + ∂2

ζ ω
)

− (φω)′ = −(vω)′ − ∂ζ (wω). (2.11)

To seek solutions which are periodic in time t (or steady) and periodic in the
spanwise direction ζ , we expand u, v, w, ω and θ in a double Fourier series:

u(η, ζ, t) = Ap

∞∑
m,n=1

umn(η) exp{i(mσ0t + nk0ζ )} + v′
0(η), (2.12a)

v(η, ζ, t) = Ap

∞∑
m,n=1

vmn(η) exp{i(mσ0t + nk0ζ )} − v0(η), (2.12b)

w(η, ζ, t) = Ap

∞∑
m,n=1

(nk0)
−1wmn(η) exp{i(mσ0t + nk0ζ )}, (2.12c)

ω(η, ζ, t) = Ap

∞∑
m,n=1

ωmn(η) exp{i(mσ0t + nk0ζ )}, (2.12d)

θ(η, ζ, t) = Ap

∞∑
m,n=1

θmn(η) exp{i(mσ0t + nk0ζ )} + θ0(η), (2.12e)

where Ap is the perturbation amplitude; k0 = k∗l0 is the fundamental wavenumber in
the spanwise direction and σ0 = σ ∗/A∗ is the fundamental frequency. The functions
v0(η) and θ0(η) represent the non-zero spanwise averages of the perturbation velocity
and temperature, i.e. the modification to the mean flow profiles owing to the nonlinear
interaction among the disturbance modes. Additionally, the normal derivative of θ0(η)
at the wall gives the spanwise- averaged heat transfer enhancement.
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Substituting the expansions (2.12a) into the continuity equation (2.9a) yields

umn + v′
mn + i wmn = 0, (2.13)

and from the definition of ωmn, it follows that

i n2k2
0 vmn − w′

mn + nk0ωmn = 0. (2.14)

Similarly, the governing equations for streamwise velocity umn, vorticity ωmn and
temperature θmn reduce to

u′′
mn −

(
2φ′ + n2k2

0 + imσ0

)
umn + φ u′

mn − φ′′ vmn = N0(u, v, w), (2.15)

ω′′
mn −

(
n2k2

0 + imσ0

)
ωmn + (φωmn)

′ = N1(v, w, ω), (2.16)

θ ′′
mn −

(
n2k2

0 + imPrσ0

)
θmn + Prφθ ′

mn − Pr vmnΘ
′ = N2(v, w, θ). (2.17)

The equations for v0(η) and θ0(η) can also be derived as

v′′′
0 + φv′′

0 − 2φ′v′
0 + φ′′v0 = N3(u, v), (2.18)

θ ′′
0 + Prφθ ′

0 = N4(v, w, θ). (2.19)

In the above equations, Ni are the nonlinear terms given by the following expression:

N0 = 1
2
Ap

∞∑
p,q=1

{
upqum−p,n−q + ûpqum+p,n+q + vpqu

′
m−p,n−q + v̂pqu

′
m+p,n+q

+
i

q
[(n − q)wpqum−p,n−q + (n + q)ŵpqum+p,n+q]

}
, (2.20a)

N1 = 1
2
Ap

∞∑
p,q=1

{
[vpqωm−p,n−q + v̂pqωm+p,n+q]

′ +
in

q
[wpqωm−p,n−q + ŵpqωm+p,n+q]

}
,

(2.20b)

N2 = 1
2
ApPr

∞∑
p,q=1

{
vpqθ

′
m−p,n−q + v̂pqθ

′
m+p,n+q +

i

q
[(n − q)wpqθm−p,n−q

+ (n + q)ŵpqθm+p,n+q]

}
, (2.20c)

N3 = A2
p

∞∑
p,q=1

[
|upq |2 + 1

2
(vpqûpq)

′], (2.20d)

N4 = 1
2
A2

pPr

∞∑
p,q=1

Re{v̂pqθ
′
pq + iŵpqθpq}, (2.20e)

whereˆ stands for the complex conjugate. Suppose that unsteady disturbance vorticity
is introduced upstream at η = H0 � 1 by superimposing a simple sinusoidal variation
with the amplitude Ap , at the fundamental spanwise wavenumber k0, and frequency
σ0 on the mean velocity φ(η). The disturbance boundary conditions at η = H0 are

v11 = 1, vmn = 0 for m, n �= 1, umn = wmn = θmn = 0. (2.21)

At the wall η = 0, no-slip and isothermal boundary conditions are enforced for the
velocities and temperature, thus

umn = vmn = wmn = θmn = 0. (2.22)
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Once the disturbance velocity vmn, wmn and temperature θmn are obtained, the relative
heat transfer enhancement �h over its undisturbed mean value h can be found by
solving (2.19)

�h

h
=

θ ′
0(0)

Θ ′(0)
= −

∫ ∞

0

exp

(
−Pr

∫ η

o

φ dη′
)∫ η

0

N4 exp

(
Pr

∫ η′

o

φ dη′′

)
dη′dη. (2.23)

It is convenient to introduce new length and velocity scales besides those in (2.1).
By the assumed spanwise periodicity, natural choice for-the disturbance length and
velocity scales are

ld = 1/k∗, ud = νk∗. (2.24)

It is observed below that the square of the ratio between the disturbance length scale
ld and the Hiemenz boundary-layer scale l0, represented by a dimensionless parameter
λ see Kerr & Dold (1994),

λ =

(
ld

l0

)2

=
A∗

ν∗ k∗2
=

1

k2
0

, (2.25)

is a critical parameter in determining the evolution of the disturbances. When λ is
large, the distortion of the upstream disturbances is mainly due to the mean flow
straining effect; the nonlinear interaction among the disturbance modes is of higher
order. This is similar to the cases treated by the traditional linear RDT; but, in the
presence of viscosity, the non-slip wall introduces the viscous effect in its vicinity and
must be included in the formulation both for the mean flow and the disturbances.
Interestingly, λ can also be interpreted as the time-scale ratio between the disturbance
turn-over time ld/ud and the mean flow straining time 1/A∗, i.e.

λ =

(
ld

ud

)
A∗. (2.26)

For different values of λ as well as Ap , the numerical solutions to the flow problem
posed here are presented in the next section.

3. Numerical results
The system of equations (2.13)–(2.19), with boundary conditions (2.21)–(2.22), forms

a second-order boundary-value problem driven by an inhomogeneous boundary
condition away from the wall. Numerically, they can be readily solved using the
over-relaxation method, described for example in Isaacson & Keller (1993). A fourth-
order finite-difference scheme is adopted to approximate the spatial derivatives, and
different numbers of grid points (N =200, 400) are used to obtain the grid independent
solutions. For the nonlinear calculations, a total number of modes resulting from a
truncation at m =6, n =6 of the double Fourier series in (2.12) are found sufficient
for the solutions to converge. The details of the numerical method and convergence
study can be found in Xiong (2004).

3.1. Effects of λ

The case of steady disturbance, i.e. σ0 = 0, is discussed first; this will help clarify
the dependence of the disturbance evolution on the length-scale ratio λ. In all
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Figure 2. Profiles for the mean velocity φ, its derivative φ′ and the mean temperature Θ .

computations, the Prandtl number is taken as Pr =0.71, and the disturbance amplitude
Ap is 10% of the mean flow velocity φ at the inflow boundary η = H0, i.e. Ap =
0.1φ(H0) and H0 = 18. Figure 2 shows the profiles of the base state velocity and
temperature (without any free-stream disturbance). The velocity and temperature
boundary-layer thicknesses (defined as the location at which 99% of the external
value is reached) are around η = 2.4 and η = 4, respectively. Figure 3 shows the
streamline patterns of the perturbed flow in the stagnation plane for different values
of λ. The horizontal axis spans one spanwise wavelength for each case.

As can be seen, initially at λ = 1.1, the perturbed streamlines converge toward a
free stagnation point at the symmetry plane z = 0. At λ ∼ O(2), a pair of counte-
rotating vortices start to form at the edge of the boundary layer. The strength of these
vortices increases rapidly with the increasing λ and attains its maximum at λ = 4.
When λ increases further, the vortex strength slowly decreases. At λ = 32, the vortices
disappear and are replaced again by a sink type free stagnation point. When λ = 64,
the mean flow dominates, and the free stagnation point also disappears. Qualitatively,
these streamline patterns can be classified first into two groups depending on whether
a free stagnation point (FSP) is present. The stagnation point emerges when the
disturbance wall normal velocity v exceeds the mean flow φ. Since at the wall,
φ = φ′ = v = v′ = 0, this can occur when |v ′′

(0)| � |φ ′′
(0)|. Furthermore, depending

on the direction of the spanwise velocity in the neighbourhood of FSP, the resulting
FSP can be either a sink point when the spanwise velocity w points inward, or a
saddle point when it points outward. Since by symmetry w ≡ 0 at z = 0, the direction
of w is determined by ∂w/∂z. From the continuity equation, this is in turn determined
by ∂v/∂y, the rate at which the vertical velocity tends to zero at the free stagnation
point. When ∂v/∂y < 0, it becomes a saddle point and the streamlines emanating from
the stagnation point eventually form the spiral vortices. For the present case with
fixed Ap , the free stagnation point emerges for λ> 1, and transition from a sink-point
to a saddle-point type occurs at λ = 1.6. At λ = 30, the saddle-type stagnation point
changes back to a sink-point type, causing the vortices to disappear. At λ � 60, the
free stagnation point also disappears, and the perturbed flow becomes unidirectional
in the wall normal direction.
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Figure 3. Streamline patterns in the stagnation plane for different values of λ. Flow is
downward and the spanwise width is one disturbance wavelength. λ = 1.1, 2, 4, 16, 32, 64 from
(a) to (f ).

3.2. Effects of Ap

In addition to the change of λ, the effect of the disturbance amplitude Ap on the
vortex formation is shown in figure 4 where Ap varies from 2% to 15% of φ(H0) for
fixed λ = 4. In this case, the free stagnation point first emerges at Ap = 0.03φ(H0), and
the transition from the sink type to the saddle type takes place at Ap = 0.05φ(H0).
The latter can be considered as a threshold for Ap since only beyond this value do the
counter-rotating vortices become possible in the streamline pattern. Moreover, figure 4
also reveals that although the strength of the vortices increases with increasing Ap ,
the overall flow pattern remains qualitatively similar once the threshold is reached.
The existence of a threshold in disturbance amplitude is also consistent with earlier
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Figure 4. Streamline patterns in the stagnation plane for different values of Ap at λ = 4. Flow
is downward and the spanwise width is one disturbance wavelength. Ap = 0.02, 0.05, 0.07, 0.10,
0.12, 0.15 from (a) to (f ).

observations by Nagib & Hodson (1978) on the formation of a vortex pair at the
stagnation region of a bluff body subject to the impingement of wakes. Similar
flow patterns as those shown in figures 3 and 4 also emerge in the aforementioned
experiments (Nagib & Hodson 1978; Böttcher, J. & Wedemeyer, E. 1989) as well
as numerical simulations (Xiong & Lele 2001; Bae et al. 2003). The quantitative
characterization of the flow fields in figure 4 in terms of the maximum wall normal
disturbance velocity |vmax|, wall vorticity |ωw| and heat transfer enhancement �h/h

are summarized in table 1.

3.3. Harmonics and heat transfer

Figure 5 shows the profiles of the fundamental mode and higher harmonics at λ = 4
for the disturbance velocity, vorticity and temperature. The disturbance v velocity and
vorticity are found to be amplified before reaching the boundary layer. Compared
to the fundamental mode m = 1, n =1, the amplitudes of the higher harmonics are
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Amplitude Ap/φ(H0) Velocity |vmax| Vorticity |ωw| Heat transfer �h /h

0.02 0.9321 1.4953 0.0100
0.05 2.5558 3.7457 0.0620
0.07 3.8928 5.2490 0.1206
0.10 6.4999 7.5256 0.2406
0.12 8.8094 9.0672 0.3368
0.15 13.729 11.410 0.4918

Table 1. The maximum wall normal disturbance velocity |vmax|, vorticity at the wall |ωw| and
the heat transfer enhancement �h/h for different Ap at λ = 4, H0 = 18.
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Figure 5. Profiles for steady (σ = 0) velocity and temperature disturbances at λ = 4. Solid
line is the fundamentalmode. The dashed, dash–dot and dotted line correspond to mean flow
modification, second and third harmonics for umn, vmn, θmn, and second, third and fourth
harmonics for ωmn and wmn.

typically small, except for temperature where the mean temperature modification
θ0 attains an amplitude similar to θ11. Of the three components of the disturbance
velocity, umn is found to be typically one order of magnitude smaller than vmn and wmn.
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The corresponding contours for the vorticity and temperature are plotted in figures 6
and 7. The incoming vorticity is amplified by a factor greater than 5 owing to stretching
and thus large-amplitude vorticity with opposite sign is induced within a thin near-
wall region to satisfy the no-slip boundary condition. The temperature contours are
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also significantly modified by the disturbance velocity. The upward velocity causes
the local thermal boundary layer to become thicker, while the downward velocity
makes it thinner. The net effect on the spanwise averaged heat transfer depends on
the strength and distribution of these thickened and thinned regions.

In figure 8, the relative heat transfer enhancement �h/h is plotted as a function
of λ. For small λ, or small disturbance wavelength, �h/h increases rapidly as λ
increases. However, for large λ, it decrease slowly with the increase of λ. A peak value
is found around λ = 4, indicating that an optimum disturbance length scale exists at
about five times the boundary-layer thickness and produces maximum heat transfer
enhancement. Also shown in figure 8, is the maximum value of the fundamental
mode of the disturbance wall normal velocity v11. It shows a similar trend with λ
and optimum amplification at nearly the same value of λ. However, for large λ,
vmax ∼ λ−1/2 while �h/h ∼ λ−1. Finally, in figure 9, the amplitude of the vorticity at
the wall is plotted as a function of λ. Besides a similar peak location around λ = 4, the
striking feature of the wall vorticity is that it approaches a constant which depends
only on H0 and Ap as λ becomes large.

The dependence of flow characteristics on the length scale is due to the competition
between the vortex stretching and the viscous dissipation. The convective heat transfer
or more generally passive scalar transport is a direct consequence of the amplified
velocity disturbances, and may in fact be regarded as an indication of how significantly
the flow near the wall has been modified. Based on this point of view, the vorticity
equation (2.16), comprising the mean flow stretching, viscous dissipation and nonlinear
interaction effects, will be the starting point for analysing the disturbance evolution.
From the profiles of ωmn in figure 5, the nonlinear interaction is shown to be
relatively weak, hence, in the subsequent analysis, the nonlinear terms in (2.16) will
be neglected. A similar rationale is also the basis for the linear RDT which has
been successfully applied to this type of flow. However, unlike the purely inviscid
interaction considered in RDT, in the present problem, viscosity exerts a significant
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Figure 9. Vorticity magnitude at the wall as a function of λ for the steady fundamental
mode.

influence upon the disturbance throughout the whole domain, even when the mean
flow can be treated largely as inviscid in the region outside the boundary layer. Indeed,
it is the balance between the vortex stretching and viscous diffusion that produces
the maximum vorticity near the edge of the boundary layer. Therefore, analysis of
the vorticity dynamics helps to understand the basic mechanism governing the flow
and the associated scalar transport. This is carried out in detail in the subsequent
sections.

4. Linear vortex dynamics
The primary goal of the analysis in this section is to find an asymptotic expression

describing the evolution of the large-scale low-frequency disturbances in the Hiemenz
boundary layer. The solution is sought by first expressing the vorticity in a series
expansion based on the large length scale (λ� 1) and low frequency(σ0 � 1). This
solution is formally valid in the entire spatial domain, but insufficient to describe the
vorticity evolution in an explicit way owing to the lack of a closed-form expression
for φ. On the other hand, by exploiting the particularly simple form taken by φ

in the region outside the Hiemenz boundary layer, a closed-form solution for the
vorticity can be found for any arbitrary λ and σ0 in that region. These two solutions
are required to match in the region outside the Hiemenz boundary layer where they
are both valid. Thus, an explicit composite asymptotic solution can be formulated
which describes the evolution of the large-scale low-frequency vortical disturbances,
and forms the basis of further analysis.

4.1. Series expansion

As shown by the numerical results in figure 5, the disturbance typically reaches its
maximum amplitude at the edge of the boundary layer before it decays. By (2.16)



Disturbances in a Hiemenz boundary layer 215

and (2.25), the linearized governing equation for ωmn takes the form

ω′′
mn −

(
n2

λ
+ i mσ0

)
ωmn + (φωmn)

′ = 0. (4.1)

Here only the case of large λ� 1 and small σ0 � 1 will be considered. These limits
correspond to the situation where the upstream disturbance is of large scale and low
frequency relative to the Hiemenz boundary-layer scales. This regime is prototypical
for the free-stream turbulence impinging on gas turbine blades. A small parameter ε

may be defined as:

ε =
n2

λ
+ i mσ0, |ε| � 1, (4.2)

and a series solution of ωmn is sought in the powers of ε as a regular perturbation:

ωmn = ω0
mn + εω1

mn + · · · . (4.3)

The equation at zeroth order becomes(
ω0

mn

)′′
+

(
φω0

mn

)′
= 0, (4.4)

whose general solution can be found as

ω0
mn(η) = E0 e−Φ + F 0 e−Φ

∫ η

0

eΦ(η′) dη′. (4.5)

At first order, the equation is (
ω1

mn

)′′
+

(
φω1

mn

)′
= ω0

mn, (4.6)

and the solution can be expressed using ω0
mn as

ω1
mn(η) = E1e−Φ + F 1e−Φ

∫ η

0

eΦ(η′) dη′ + e−Φ

∫ η

0

eΦ(η′)

∫ η′

0

ω0
mn(η

′′) dη′′ dη′, (4.7)

where Φ is defined as

Φ(η) =

∫ η

0

φ(η′) dη′ (4.8)

and E0, E1, F 0, F 1 are arbitrary constants. The higher-order terms can be computed
similarly. The series expansion (4.3) is valid in the entire spatial domain from the wall
to the inflow, but, as such, is of limited use because it involves unknown constants. In
the next section, the exact solution of (4.1) in a region outside the Hiemenz boundary
layer is obtained for arbitrary λ and σ0. By examining the characteristics of the exact
solution for the case of λ� 1 and σ0 � 1, the unknown constants in (4.5) can be
determined.

4.2. Outside the boundary layer

Outside the Hiemenz boundary layer, the relevant length and velocity scales are
determined by the incoming disturbance. To facilitate the subsequent analysis, the
vorticity equation (4.1) is first rescaled by ld and ud defined in (2.24)

ω′′
mn + λφω′

mn + (λφ′ − n2 − i mλσ0)ωmn = 0. (4.9)

Note here both the dependent and independent variables are rescaled, and the
derivatives are now with respect to the new independent variable s = y∗/ld = η/

√
λ.
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In particular, the mean velocity profile φ(s) in (4.9) is equal to the φ(η) multiplied
by the factor 1/

√
λ, i.e. φ(s) = φ(η)/

√
λ. The boundary conditions for the mean and

disturbance flow remain unchanged under this rescaling.
As noted in figure 2, the mean velocity profile φ takes a simple irrotational form

outside the Hiemenz boundary layer

φ ∼ s − sd, φ′ ∼ 1, (4.10)

where sd represents the displacement thickness δd of the Hiemenz boundary layer,
i.e. sd = δd/

√
λ. In this region, the main effect of φ on the disturbances, besides

the convection, is to stretch the ξ -component of the incoming vorticity. When the
disturbance scale is relatively large, viscosity plays a less important role and the
straining effect leads to an increase of the vorticity.

Denoting ωmn outside the boundary layer by ωp
mn and using (4.10), (4.9) becomes(

ωp
mn

)′′
+ λ (s − sd)

(
ωp

mn

)′
+ (λ − n2 − i mλσ0)ω

p
mn = 0. (4.11)

On introducing a new independent variable τ

τ = − 1
2
λ(s − sd)

2, (4.12)

the vorticity equation is further transformed into

τ
(
ωp

mn

)′′
+

(
1
2

− τ
)(

ωp
mn

)′ −
(
λ − n2 − imλσ0

)
2λ

ωp
mn = 0, (4.13)

where ′ stands for d/dτ . This is the confluent hypergeometric equation of the general
form

xy ′′ + (c − x)y ′ − ay = 0, (4.14)

whose solution may be expressed as

y = C1M(a; c; x) + C2 U (c − a; c; −x) ex

for c �= 0, ±1, ±2 · · ·. M(a; c; x) and U (a; c; x) are the first and second kind of
confluent hypergeometric functions (Abramowitz & Stegun 1970). In the present
case, they correspond to

y = ωp
mn; x = τ ; c = 1

2
; a =

λ − n2 − imλσ0

2λ
. (4.15)

An integral representation for M(a; c; x) when Re c >Re a > 0 is

M(a; c; x) =
Γ (c)

Γ (a)Γ (c − a)

∫ 1

0

ta−1(1 − t)c−a−1ext dt

and U (a; c; x) can be expressed by M(a; c; x) through the following expression.

U (a; c; x) =
π

sin(cπ)

{
M(a; c; x)

Γ (1 + a − c)Γ (c)
− x1−c M(1 + a − c; 2 − b; x)

Γ (a)Γ (2 − c)

}
. (4.16)

Hence, the general solution for the vorticity becomes

ωp
mn = C1 M

(
λ − n2

2λ
− i

mσ0

2
; 1

2
; τ

)
+ C2 U

(
n2

2λ
+ i

mσ0

2
; 1

2
; −τ

)
eτ . (4.17)

For λ< 1, the solution simply decays from its upstream value, and for λ = 1 it
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Figure 10. A typical vorticity profile composed of two confluent hypergeometric functions.
λ = 4, σ0 = 0.

becomes a constant. So, in what follows, only the case of λ> 1 is considered. First,
writing s in terms of the original variable η, and by the definition of τ , it follows that

η =
√
λs , τ = − (η − δd)

2

2
= − η̃2

2
, (4.18)

where the shifted coordinate η̃ is defined as

η̃ = η − δd. (4.19)

After some simplification, the general solution for the vorticity outside the boundary
layer ωp

mn may be expressed as

ωp
mn = Cmn M

(
λ − n2

2λ
−i

mσ0

2
; 1

2
; − η̃2

2

)
+ Dmn M

(
2λ − n2

2λ
−i

mσ0

2
; 3

2
; − η̃2

2

)
η̃, (4.20)

where Cmn, Dmn are arbitrary constants. A typical solution for λ = 4, σ0 = 0 composed
of two confluent hypergeometric functions (with Cmn, Dmn specified by (4.35) in § 4.4)
is illustrated in figure 10.

4.3. Composite solution

To facilitate further analysis, the series solutions (4.3)–(4.7) is combined with the
solution outside the boundary layer to derive a composite asymptotic solution. To do
so, the unknown coefficients in the series expansion must be determined first. Notice
that as η → ∞,

φ ∼ η̃, Φ ∼ Φ0 +
η̃2

2
, (4.21)

where Φ0 =
∫ ∞

0
(φ−η̃) dη−δ2

d/2 is an integral constant. This asymptotic representation
is valid for η̃ > η̃0, where η̃0 � δd is a location beyond which the irrotational flow
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applies. The zeroth-order series solution (4.5) may be rewritten as

ω0
mn(η) = e−Φ

[
E0 + F 0

∫ η0

0

eΦ(η′) dη′
]

+ F 0 e−Φ

∫ η

η0

eΦ(η′) dη′. (4.22)

However when η → ∞, the first term in (4.22) vanishes, so it follows that

ω0
mn(η) ∼ F 0 exp(−Φ)

∫ η

η0

exp(Φ(η′)) dη′ ∼ F 0 exp(−η̃2/2)

∫ η̃

0

exp(η̃′2/2) dη̃′, (4.23)

where in the second expression, (4.21) has been used and the lower limit has been
extended to zero using the same decomposition as in (4.22). On the other hand, the
corresponding zeroth-order expansion of (4.20) in ε becomes

ωp0
mn = Cmn M

(
1
2
; 1

2
; − 1

2
η̃2

)
+ Dmn M

(
1; 3

2
; − 1

2
η̃2

)
η̃. (4.24)

Noting the following identities

M(a; a; z) = exp z, exp (−z2/2)

∫ z

0

exp (z′2/2) dz′ = zM
(
1; 3

2
; − 1

2
z2

)
(4.25)

and comparing (4.23) and (4.24) for large η, we obtain

Dmn = F 0, (4.26)

since the first term in (4.24) vanishes more rapidly than the second.
No appropriate matching condition for Cmn can be derived from the large η

asymptotics. Hence, it is necessary to find the matching condition by considering the
behaviour of the vorticity close to the wall. As shown in figure 9, the wall vorticity
plays a key role in determining the interaction between the incoming disturbances
and the Hiemenz boundary layer. An initial choice for matching Cmn and E0 therefore
seems to require the wall vorticity obtained from (4.20) and (4.5) to be equal. However,
the vorticity at the wall obtained by setting η = 0 in (4.20) is not accurate, since (4.20)
is only applicable outside the Hiemenz boundary layer. A more appropriate choice
is to require the vorticity obtained from the two solutions to match at the edge of
the Hiemenz boundary layer where both solutions apply. This results in the following
expression for Cmn,

Cmn =

[
E0 + F 0

∫ δ

0

exp (Φ) dη

]
exp (−Φδ) − F 0

∫ δ−δd

0

exp (η2/2) dη, (4.27)

where Φδ = Φ(δ) − (δ − δd)
2/2. Further matching (4.20) to (4.7) at higher order

requires evaluation of M(a, c, z) subject to the perturbation of a and the asymptotic
behaviour of the last term in (4.7) for large η, for which the explicit expressions
have not been obtained. Nevertheless, an approximate solution of ωmn, more explicit
than the series expansion, can still be constructed by a similar procedure to those in
matched asymptotics (Van Dyke 1975), i.e.

ωmn ∼ ω0
mn +ωp

mn − ωp0
mn, (4.28)

here the expressions for ω0
mn, ωp

mn and ωp0
mn are (4.5), (4.20) and (4.24), respectively.

Using the matching condition (4.26) and (4.27), we obtain the following asymptotic
expression for the incoming vorticity in the case of λ� 1 and σ0 � 1 in the whole
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Figure 11. Comparison of vorticity profile between numerical and asymptotic
solutions at λ = 4.

range of η

ωmn(η) ∼ Cmn

[
M

(
λ − n2

2λ
− i

mσ0

2
; 1

2
; − (η − δd)

2

2

)
+ exp (Φδ − Φ) − exp (−(η− δd)

2/2)

]

+ Dmn

[
M

(
2λ − n2

2λ
− i

mσ0

2
; 3

2
; − (η − δd)

2

2

)
(η − δd)

+ exp (Φδ − Φ)

∫ δ−δd

0

exp (η2/2) dη + exp (−Φ)

∫ η

δ

exp (Φ(η′)) dη′

− M

(
1; 3

2
; − (η − δd)

2

2

)
(η − δd)

]
. (4.29)

Here, the dependence of ωmn as an explicit function of λ and σ0, not readily obtained by
the series expansion itself, has been retained in (4.29), and by correcting the ωp0

mn in the
near-wall region through ω0

mn, (4.29) also extends inside the Hiemenz boundary layer.
In figures 11 and 12, the comparisons between the composite asymptotic solution
(4.29) and the numerical solution are shown for λ = 4 and λ = 36, respectively. The
vorticity profiles have been normalized by its value at the inflow boundary η = H0.
The numerical solutions are obtained by solving both the linear equation (4.9) and
the fully nonlinear equation (2.16). The asymptotic solution and the linear numerical
solution agree well at λ = 4 and become indistinguishable at λ = 36. Recall that
the disturbance amplitude is here taken as 10% of the mean free-stream velocity,
Ap = 0.1φ(H0), and the linear solution approaches the nonlinear solution quite well
as λ increases. This indicates that the present linear analysis is adequate for describing
the characteristics of disturbance development in a Hiemenz flow.

4.4. Boundary conditions for the vorticity

The general composite solution in (4.29) describes the evolution of disturbance
vorticity in the whole domain from the inflow to the wall boundary. Now, we set out
to specify the constants Cmn and Dmn by the inflow and wall boundary conditions. In
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Figure 12. Comparison of vorticity profile between numerical and asymptotic
solutions. λ = 36.

fact, it will later become clear that both Cmn and Dmn have clearly defined physical
meanings. First, the initial disturbance vorticity is introduced at the inflow boundary
far upstream, i.e.

ωmn = ωmn(H0) at η = H0. (4.30)

Then, the value of vorticity at the wall must be specified. However, there is no explicit
expression for ωmn(η = 0) because, as indicated by Sutera (1965), the vorticity equation
is coupled, through the no-slip boundary condition, with the velocity equations. To
obtain the correct value of vorticity on the wall, the equation for normal velocity vmn

must be solved first. By (2.13) and (2.14), it follows

v
′′

mn − n2 k2
0 vmn = −ink0ωmn − u′

mn with vmn(0) = v′
mn(0) = 0. (4.31)

Using the method of variation of parameters, the solution of vmn satisfying the above
boundary conditions is

vmn = −exp (nk0η)

2

∫ η

0

(iωmn + umn) exp (−nk0η
′) dη′

+
exp (−nk0η)

2

∫ η

0

(iωmn − umn) exp (nk0η
′) dη′. (4.32)

However, (4.32) contains umn which couples with vmn through (2.15) and has not been
solved. Nevertheless, by requiring that vmn is bounded as η → ∞, further analysis (see
Appendix A) shows that the second boundary condition for ωmn can be expressed as∫ ∞

0

ωp
mn exp (−nk0η) dη = 0. (4.33)

Together with (4.30), we now have

M1 Cmn +M2 Dmn = 1, (4.34a)

I1 Cmn +I2 Dmn = 0. (4.34b)
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Solving (4.34) for Cmn and Dmn yields

Cmn = − I2

M2 I1 − M1 I2

, Dmn =
I1

M2 I1 − M1 I2

, (4.35)

where

M1 = M

(
λ − n2

2λ
− i

mσ0

2
; 1

2
; − (H0 − δd)

2

2

)
, (4.36a)

M2 = M

(
2λ − n2

2λ
− i

mσ0

2
; 3

2
; − (H0 − δd)

2

2

)
(H0 − δd), (4.36b)

I1 =

∫ ∞

0

M

(
λ − n2

2λ
− i

mσ0

2
; 1

2
; − (η − δd)

2

2

)
exp (−nk0η) dη, (4.36c)

I2 =

∫ ∞

0

M

(
2λ − n2

2λ
− i

mσ0

2
; 3

2
; − (η − δd)

2

2

)
(η − δd) exp (−nk0η) dη. (4.36d)

Notice that in (4.34) the vorticity at the inflow has been chosen as ωmn(H0) = 1 since
the equation is linear. The value of ωmn therefore represents the factor by which the
initial vorticity is amplified or attenuated as it approaches the wall. Before we discuss
the asymptotic behaviours of Cmn and Dmn, a few remarks on their significance and
qualitative behaviour are in order. First, (4.29) indicates that for a vortical disturbance
specified upstream by λ and σ0, the induced vorticity on the wall is directly related
to the values of Cmn and Dmn. In the case of λ� n2, |Cmn| represents the amplitude
of vorticity at the wall, i.e. |ωmn(0)| ∼ |Cmn|, and Dmn represents the amplitude of
the normal derivative of the vorticity at the wall, i.e. |ω′

mn(0)| ∼ |Dmn|. This can also
be seen more clearly from figure 10. Consequently, the amplitudes of Cmn and Dmn

indicate the effectiveness of the disturbance in penetrating the boundary layer and
modifying the mean flow structures near the wall. Secondly, the boundary condition
(4.33) shows that for steady disturbance, ωp must change sign in the flow domain;
vorticity with sign opposite to the incoming vorticity must be developed at the wall
in order to satisfy the no-slip boundary condition. This can be observed clearly from
the vorticity contours in figure 6. Note that the amplitude of the induced vorticity
at the wall ωmn(0), as shown in figure 9, approaches a constant when λ becomes large.
The origin and implications of this behaviour of ωmn(0) can be understood through
the asymptotic analysis for large λ and small σ0, and is presented in the next section.

5. Asymptotic behaviour
In this section, the asymptotic behaviour of Cmn and Dmn in the vorticity expression

is analysed for the large-scale λ� 1 and low-frequency σ0 � 1 disturbances. Based on
this analysis, a scaling relation for the heat transfer enhancement in stagnation-point
flows in the presence of upstream disturbances is also derived.

5.1. Vorticity asymptotes

The asymptotic expression of Cmn for large λ and small σ0 may be obtained as (see
the Appendix B)

|Cmn| ∼ H0

[
1 + (a1 − lnH0)

n2

λ

][
1 − αn m2

8
σ 2

0

]
, (5.1)

where a1 = (ln 2 + γ )/2 and γ = 0.5772156 · · · is the Euler constant. The expression
for |Dmn| can be similarly obtained.
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Figure 13. Vorticity profiles for different fundamental disturbance frequency σ0 at λ = 4.

An important observation for (5.1) is that the amplitude of the vorticity induced
at the wall, up to the leading order, is linearly dependent on the normal distance
H0 between the wall and the upstream location where the disturbance is introduced.
This means that for large λ and small σ0, within the linear dynamics regime, the
amplification factor due to the vortex stretching for the initial vortical disturbance
has an upper limit set by H0. This explains the behaviour seen in figure 9 as λ
becomes large. From (5.1), we also find that the unsteadiness of the disturbances
tends to decrease the induced vorticity amplitude at the wall compared with the
steady case, but only to the second order in terms of frequency σ0. In figure 13,
the vorticity profiles at different frequencies are computed numerically for λ = 4 to
show the effect of the disturbance unsteadiness. Notice that although the numerical
computation uses the full nonlinear equations, the vorticity value at the wall indeed
follows the asymptotic behaviour (5.1) and shows only modest changes relative to
the steady case for σ0 < 0.5. When we consider time scale, σ0 � 1 implies that the
disturbance turnover time is much longer than the time scale of mean flow distortion;
vortex stretching is predominant, and hence flow structures similar to the steady case
are generated. For the high-frequency case σ0 � 1, (4.2) is not valid, and in the course
of disturbances being convected towards the wall, many cycles of oscillation have been
completed. The net vorticity induced at the wall is small because of the cancellation
effect of the incoming disturbance vorticity with alternating signs. This effect, also
known as ‘vortex piling’, has been analysed by Hunt (1973). Our numerical results in
figure 13 show that, indeed, the induced vorticity at the wall decays monotonically
with σ0 and becomes rather small when σ0 > 2.5.

5.2. Heat transfer scaling

With the amplitude of the velocity disturbance at the inflow vmn(H0) kept constant,
the vorticity ωmn introduced at the inflow varies as a function of λ

ωmn(H0, λ) = ωmn(H0, 1)λ−1/2, (5.2)
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where ωmn(H0, 1) is a reference value of vorticity for λ = 1. Recall that, Cmn, Dmn, as
functions of λ and σ0, represent the amplification factor for the wall vorticity value.
The amplification factor increases with λ, initially at a large rate, but eventually it
approaches a constant value determined by H0. Together with the λ−1/2 factor, this
gives rise to an overall optimum amplification for λ≈ 4.

Once the vorticity is obtained, the corresponding velocity disturbance can be found
by (4.32) as

vmn = 1
2
exp (−nk0η)

∫ η

0

(iωmn − umn) exp (nk0η
′) dη. (5.3)

As shown in Appendix A, the second term of the integrand in (5.3) is expected to
be much smaller than the first for k0 � 1. Hence, the dependence of vmn on λ directly
follows that of ωmn. When λ is large, the vorticity amplification factor Cmn approaches
a constant. Accordingly, |v|max ∼ λ−1/2, a trend noted in figure 8. Now from (2.23), it
follows that

�h

h
=

θ ′
0(0)

Θ ′(0)
∼

∑
m,n

|vmn| |θmn|. (5.4)

For the temperature disturbance θmn, the linearized equation of (2.17) is

θ ′′
mn + Prφθ ′

mn − (n2k2
0 + im Prσ0)θmn = Pr vmnΘ

′. (5.5)

The amplitude of the temperature fluctuation θmn can be deduced; that is, θmn will be
proportional to the amplitude vmn and follows the same asymptotic dependence on λ
as ωmn and vmn. Hence, we have

|vmn(η)| ∼ |θmn(η)| ∼ |ωmn(η)| ∼ |Cmn| |vmn(H0)|√
λ

. (5.6)

For the low-frequency case σ0 � 1, the heat transfer enhancement scales with the
disturbance parameters,

�h

h
∼

A2
pH 2

0

λ

∑
m,n

[
1 + (a1 − lnH0)

n2

λ

]2 [
1 − αn

8
m2σ 2

0

]2

|vmn(H0)|2. (5.7)

When λ� 1, we have �h/h ∼ λ−1 for fixed Ap , a behaviour noted in figure 8. We can
rewrite 1/λ in terms of the disturbance length scale ld , and obtain the following scaling
relation for the relative heat transfer enhancement at low disturbance frequency

�h

h
∼

A2
p

l2d

∑
m,n

(
1 − αn

8
m2σ 2

0

)2

|vmn(H0)|2. (5.8)

The above expression reveals different roles played by the various flow parameters
in heat transfer enhancement. First, the enhancement is proportional to the square
of the disturbance amplitude Ap owing to the net convective flux by the disturbance
modes. Secondly, the length scale of the disturbance has a critical effect upon the heat
transfer enhancement. For large-scale disturbances, the heat transfer enhancement
decreases with increased length scale. The most effective disturbance will be those
with length scales comparable to the boundary-layer thickness. Finally, the overall
effect of the frequency of the disturbances is to reduce the heat transfer enhancement.
The decrease is of the second order when the frequency is low, and at high frequencies
the heat transfer enhancement approaches to zero owing to the rapid decay of the
incoming disturbances. So far, the Prandtl number has been kept at a constant in the



224 Z. Xiong and S. K. Lele

analysis Pr = 0.71. For a different Prandtl number, both the mean thermal boundary-
layer thickness and the amplitude of θmn will be affected. Nevertheless, the qualitative
dependence on Prandtl number can be inferred from (2.23). For small Pr, the �h/h

increases with the increase of Pr, but as Pr becomes very large, the effect diminishes
owing to the extremely thin thermal boundary layer. So there will be an optimal
value of Prandtl number for each fixed value of λ which gives the maximum heat
transfer enhancement. Numerical calculations show that this optimal Prandtl number
decreases with increasing λ from Pr= 7 at λ = 1.5 to Pr = 0.71 at λ = 12. However,
for a fixed Prandtl number, the optimal value of λ is still around λ = 4, and the
overall maximum value of �h/h occurs around λ = 4 and Pr= 1.5.

6. Discussion of free-stream turbulence
One of the primary goals of the present analysis is to gain improved understanding

of the effect of free-stream turbulence in stagnation-point flows. In this section,
we derive a scaling correlation between the heat transfer enhancement and the
characteristics of the free-stream turbulence based on the preceding analysis. The
formulation is analogous to that in RDT, i.e. the overall changes of the turbulence
statistics are obtained by integrating over all the Fourier modes once the modal
distortion for each of them is known. The comparison between the scaling correlation
and experimental measurements serves as a test of the applicability of the present
analysis to relevant engineering problems.

The free-stream turbulence is assumed to be isotropic and homogeneous. On
expressing the velocity fluctuations as

u(ξ, η, ζ, t) =

∫ ∫ ∫ ∞

−∞
û (κ1, κ2, κ3) exp [i(κ1ξ + κ2η + κ3ζ + σ t)] dκ1 dκ2 dκ3, (6.1)

and using the frozen-turbulence approximation, the free-stream turbulence is con-
vected into the domain through the inflow boundary with a time frequency σ = −Uκ2.
Let η = H0 be the location of the inflow boundary, then

u(ξ, H0 − Ut, ζ ) =

∫ ∫ ∫ ∞

−∞
ûin(κ1, κ2, κ3) exp (i(κ1ξ + κ2(H0 − Ut) + κ3ζ )) dκ1 dκ2 dκ3.

(6.2)
While being convected towards the stagnation point, the free-stream turbulence
experiences an accumulated vortex stretching in the ξ -direction by the diverging
mean flow. As a result, this leads to k1 � k2, k3 in the stagnation-point region. Thus,
the dependence of u on ξ may be neglected in the above expression, and the inverse
transformation of ûin is now written as

ûin(κ2, κ3) =
1

(2π)2

∫ ∫ ∞

−∞
u(H0 − Ut, ζ ) exp (−i(κ2(H0 − Ut) + κ3ζ )) dζ dt (6.3)

The heat transfer enhancement in the presence of free-stream turbulence can be
computed in terms of the downstream velocity and temperature spectra û(η, κ2, κ3),
θ̂(η, κ2, κ3). Following the discussion in preceding sections, we assume that for the
η-velocity v̂ and temperature θ̂

v̂(η, κ2, κ3) = G(η)v̂(H0, κ2, κ3) ∼ θ̂ (η, κ2, κ3), (6.4)

where function G(η) represents the amplification ratio at downstream location η for
mode v̂(κ2, κ3) owing to mean flow straining and viscous dissipation. Taking the
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amplitude of G(η) as C(κ2, κ3), i.e.

|G(η, κ2, κ3)| ∼ |C(κ2, κ3)|, (6.5)

the overall effect of free-stream turbulence on the heat transfer can be estimated
by summing the contribution from all the modes of different wavenumbers and
frequencies. In view of (2.23), for a single-mode disturbance specified at the inflow,
the heat transfer enhancement mainly results from the second-order interaction terms.
Thus, in the present linear analysis, when (2.23) and (6.4) are used to find the
contribution from mode v̂mn, the nonlinear term N4 can be written as

N4(κ2, κ3) ∼ |C(κ2, κ3)|2 |v̂(κ2, κ3)|2 ∼ |C(κ2, κ3)|2Φii(κ2, κ3), (6.6)

where the Φii(κ2, κ3) is the energy spectra density for the free-stream turbulence. Since
the free-stream turbulence is assumed to be isotropic and homogeneous, the energy
spectrum E(κ) is defined as:

E(κ) = 2πΦii(κ)κ2. (6.7)

The turbulence intensity Tu and the integral length scale L may be related to the
amplitude and fundamental wavenumber of energy containing range by

A2
p ∼ (U Tu)

2, κ0 ∼ 1

L
. (6.8)

The total contribution from all wavenumber components is the integration of the
turbulent energy spectrum, i.e.

A2
p

∑
κ2,κ3

|v̂(H0, κ2, κ3)|2 ∼
∫ ∫ ∫ ∞

0

Φii(κ) d3κ ∼ T 2
u

∫ ∞

0

E(κ)

q2L
d(κL). (6.9)

After substitution of (6.6) and (6.9) into the expression for heat transfer enhancement
(2.23), it becomes

�hT

h
∼ T 2

u

∫
Ẽ(κL) |C(kL)|2 d(κL), (6.10)

where Ẽ(κL) = E(κ)/(q2L). In most of the engineering problems involving turbulence
impinging on a stagnation point, the turbulent eddy turnover time is typically much
longer than the time scale associated with the mean flow straining, i.e. σ0 � 1.
In addition, the turbulence length scale is assumed to be much larger than the
boundary-layer thickness, i.e. L �δ. By (5.6), for a fixed upstream location it follows
that

|C(κL)| ∼ Cmn√
λ

∼ D

ld
∼ (κL)

(
D

L

)
for 0<κ <κmax. (6.11)

Hence,

�hT

h
∼

(
D Tu

L

)2 ∫ κmaxL

0

Ẽ(κL) (κL)2 d(κL), (6.12)

where kmax represents the highest wavenumber component having a contribution
to the heat transfer augmentation. From the previous analysis, the heat transfer
enhancement reaches its maximum value with the disturbance scale similar to the
boundary-layer thickness. At even smaller scales, the disturbances decay rapidly
because of the viscous dissipation and have little effect on the wall quantities.
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For practical engineering problems, such as flows over a bluff body, the boundary-
layer thickness at the stagnation region scales as

l0 =
√

ν∗/A∗ ∼ δ ∼ D√
Re

, (6.13)

where the Reynolds number is based on the mean flow U and the diameter of
curvature D (see figure 1a). For an effective strain rate A∗, e.g. A∗ = 4U/D for a
circular cylinder, κmax may be expressed as

κmaxL ∼ L

δ
∼

√
Re

L

D
. (6.14)

Furthermore, the energy spectrum of the free-stream turbulence is assumed to
follow the Kolmogoroff −5/3 law

Ẽ(κL) ∼ (κL)−5/3. (6.15)

Substituting (6.14) and (6.15) into (6.12), the heat transfer enhancement at stagnation
point can now be correlated to the free-stream turbulence parameters by

�hT

h
∼ H =

T 2
u Re2/3

(L/D)2/3
. (6.16)

Note that here the three-dimensional spectrum function is used. Following the form of
organized disturbances in previous discussion, a one-dimensional spectra is probably
more appropriate. However, at high Reynolds number, it also follows the same −5/3
law as the three-dimensional spectrum.

In order to examine heat transfer scaling, (6.16) is compared against the experi-
mental measurements for stagnation-point flows in the presence of free-stream
turbulence. A recent experiment was conducted by Ames, Wang & Barbot (2002), in
which the heat transfer to a model vane is measured for six different inlet turbulence
conditions with turbulence intensity up to 14%. The different characteristics of
the free-stream turbulence are generated using mesh biplanar grid and various
mock combustion system configurations. The experimental set-up is representative
to modern dry low NOx and aeroderivative combustors. The downstream vane
heat transfer measurements can serve as a database for the validation of predictive
methods. Another reason to choose this experiment is that the characteristics of
free-stream turbulence, i.e. intensity and length scale, are measured with the model
vane present in the flow. Thus, the mean velocity follows the Hiemenz profile at the
locations where the turbulence is measured. This is the same case as has been assumed
in the present analysis. In some other experiments (e.g. Van Fossen et al. 1995), the
free-stream turbulence is first measured in the uniform flow without the model. When
the model is present, the turbulence characteristics are obtained by extrapolation
using a power law for decaying turbulence. At locations close to the stagnation point,
the turbulence characteristics obtained by this method will be significantly different
from those obtained with the presence of the model. Although the difference becomes
smaller beyond a distance of the order of D away from the wall, the Hiemenz flow,
as a good approximation at the stagnation point for bluff-body flows, is also only
valid within the order of D away from the wall. Hence, in figure 14 the present
heat transfer correlation is compared with the measurement of Ames et al. (2002)
at four high-turbulence levels generated by grid as well as by aero-derivative and
dry low NOx mock combustor system. The Reynolds number based on the leading-
edge diameter ranges from 58 000 to 232 000; turbulence integral scale from 0.11D
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Figure 14. Experimental data of leading-edge heat transfer enhancement under free-stream
turbulence correlated by the present scaling parameter H. �, grid; �, aero-derivative;
�, aero-derivative II; �, dry low NOx.

to 1.0D and the turbulence intensity from 8 to 14%. The collective experimental
uncertainty is ±5% for turbulence measurement and ±3% for heat transfer data.
Although some scatter is present, the correlation appears to agree reasonably well
with the experimental data for the correlation parameter H over the range 5 to 35.
Notice that the turbulence levels in these experiments are quite high, but the analysis
indicates that only small-scale components contribute effectively to the heat transfer
enhancement. So even if the total turbulence level is high, the amplitude at the
small scale, i.e. the scale of boundary-layer thickness that affects the heat transfer
most, would still be relatively small. For a single-mode velocity disturbance at a level
equivalent to 10% of the mean flow, the numerical results show that the disturbance
evolution can still be largely described by linear vortex dynamics. This may explain
why the correlation based on linear analysis seems to hold even for the case of high
turbulence intensity. Also, note that the present correlating parameter is close to
the square of the empirical TLR parameter TLR = TuRe5/12

D (D/Lu)
1/3 proposed by

Ames (1997), if the turbulence integral length scale were replaced by the ‘energy scale’
Lu = 1.5|u′|3/εT , where |u′| is the r.m.s. streamwise fluctuation velocity and εT is the
turbulent dissipation rate.

7. Conclusion
In this paper, the distortion of the unsteady three-dimensional disturbances in a

Hiemenz boundary-layer flow and its effect on the wall heat transfer is analysed. By
using the linearized disturbance equations, it is found that the vorticity outside the
boundary layer can be expressed analytically in terms of confluent hypergeometrical
functions, parameterized by the disturbance length scale and temporal frequency.
When the scale of the disturbance is large and the frequency is low, an approximate
asymptotic solution is obtained with explicit dependence on the disturbance length
scale and frequency. This solution compares well with the full nonlinear numerical
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solutions over a wide range of disturbance parameters. It is further shown that the
ratio between the disturbance length scale and the boundary-layer thickness is the
critical parameter in determining the amplification factor of the incoming vorticity,
and represents the interaction between vortex stretching and viscous diffusion. The
amplification factor is found to be inversely proportional to the length scale except
at very small scales where it increases with increased length scale. The amplification
is maximum value for a disturbance length scale about five times the Hiemenz
boundary-layer thickness. The associated heat transfer enhancement also strongly
depends on the disturbance length scale and is analysed through the induced vorticity
at the wall. Compared to the steady case, the heat transfer enhancement is reduced
by the unsteadiness of the disturbance, but the effect is of second order when the
frequency is low. The analysis is further extended to the case of homogeneous and
isotropic free-stream turbulence. The turbulence energy spectrum is assumed to follow
the Kolmogoroff −5/3 law and the integral scale is much larger than the boundary-
layer thickness. Under these conditions, a new scaling correlation is derived between
the heat transfer enhancement and the turbulence intensity, integral length scale and
the mean flow Reynolds number. In comparison to the recent experimental data
on turbine blade heat transfer in the presence of free-stream turbulence, the present
correlation provides a reasonable guide to the observed variations.

This work is supported by the Air Force Office of Scientific Research under grant no.
F49620-01-1-0138 with Dr Tom Beutner as the programme manager. The computer
resource was provided by the 48-node computer cluster under DoD DURIP grant no.
F49620-01-1-0239. The authors thank the referees for their comments on the original
draft of the paper.

Appendix A. Vorticity boundary conditions
Here, we derive the second boundary condition (4.33) for the vorticity ωmn. For

simplicity, the subscript mn will be dropped from the disturbance quantities. Hence,
the linearized governing equations for ω, u and v can be written in a general form as

Lω(φ, ω) = 0, Lu(φ, v, u) = 0, Lv(u, ω, v) = 0, (A 1)

where the expressions for the L terms are those in (2.15), (2.16) and (4.31), respectively.
Following a decomposition for the mean Hiemenz velocity φ

φ(η) = φp + φb = (η − δd) + φb, (A 2)

the operators Lu and Lω can also be decomposed into

Lω(φ, ω) = Lp
ω(φp, ω) + Lb

ω(φp, φb, ω),

Lu(φ, v, u) = Lp
u (φp, v, u) + Lb

u(φ
p, φb, v, u),

}
(A 3)

where the superscript p denotes the operator in which φ has been replaced by its
potential form φp , and b denotes the complementary operator resulting from this
decomposition; the effect of the Hiemenz boundary layer is thus incorporated in the
Lb operators. The disturbances ω, u and v can also be naturally decomposed as

ω = ωp + ωb, u = up + ub, v = vp + vb. (A 4)

For the p quantities, the governing equations are

Lp
ω(φp, ωp) = 0, Lp

u (φp, vp, up) = 0, Lv(u
p, ωp, vp) = 0. (A 5a−c)
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The governing equations for the b quantities follow directly from the decompositions
in (A 3) and (A 4). For velocities up and vp , we enforce the same boundary conditions
as those for the original u and v, i.e.

up = 0 at η = 0, η → ∞, (A 6)

vp = 0,
dvp

dη
= 0 at η = 0. (A 7)

For the ωp , (4.30) leads to the first boundary condition

ωp → ω∞ as η → ∞. (A 8)

where ω∞ is the initial disturbance vorticity introduced far upstream. The second
boundary condition for ωp can be derived from the fact that as η → ∞

vp →
{

1 for fundamental mode,
0 else,

(A 9)

which is implied by (2.21). To see this, solving (A 5c) subject to the boundary condition
(A 7), we obtain

vp = −exp (nk0η)

2

∫ η

0

(iωp + up) exp (−nk0η
′) dη′

+
exp (−nk0η)

2

∫ η

0

(iωp − up) exp (nk0η
′) dη′. (A 10)

For (A 9) to be realizable, vp must remain bounded as η → ∞. So the coefficient of
exp (nk0η) in (A 10) must go to zero as η → ∞, i.e.∫ ∞

0

(iωp + up) exp (−nk0η
′) dη′ = 0. (A 11)

Moreover, notice that

up ≡ 0 (A 12)

as a result of (φp)
′′ ≡ 0 in Lp

u and the homogeneous boundary condition (A 6). Thus,
(A 11) reduces to ∫ ∞

0

ωp exp (−nk0η
′) dη′ = 0, (A 13)

which serves as the second boundary condition for ωp . Since the general expression
for ωp has been obtained in (4.20), (A 8) and (A 13) can thus be used to specify the
two arbitrary constants therein.

Once ωp and vp are known, the corresponding b quantities can be readily solved.
Notice that, by construction, ub and vb satisfy homogeneous boundary conditions,
and the boundary condition for ωb for η → ∞ is also homogeneous.

Appendix B. Vorticity asymptotes
The general asymptotic expression for the confluent hypergeometric function with

large real argument is (Abramowitz & Stegun 1970)

M(a; c; −z) =
Γ (c)

Γ (c − a)
z−a [1 + O(|z|−1) ] as z → ∞; ph(z) = 0. (B 1)
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Since the inflow boundary is assumed to be far upstream, i.e. H0 � 1, the asymptotic
expressions for M1 and M2 in (4.34) are as follows.

M1 ∼
Γ

(
1
2

)
Γ

(
n2/2λ + 1

2
imσ0

) (
H0√

2

)n2/λ−1+imσ0

, (B 2a)

M2 ∼
√

2Γ
(

3
2

)
Γ

(
(λ + n2)/2λ + 1

2
imσ0

) (
H0√

2

)n2/λ−1+imσ0

. (B 2b)

When λ → ∞, by the nature of the Γ function on a complex plane, |Γ (z)| decrease
rapidly along the imaginary axis. So (B 2) shows that for large λ, M2 � M1. Moreover,
|I1| and |I2| in (4.36) can be shown to be of the same order of magnitude, thus
compared to |I1|/|I2|M2, M1 can be neglected. Substituting these relations into (4.35)
yields the asymptotic expression for the amplitudes of Cmn and Dmn at large λ:

Cmn ∼ −
Γ

(
1
2

+ n2/2σ0 + 1
2
imσ0

)
√

2Γ
(

3
2

) I2

I1

(
H0√

2

)1−n2/λ−imσ0

, (B 3a)

Dmn ∼
Γ

(
1
2

+ n2/2λ + 1
2
imσ0

)
√

2Γ
(

3
2

) (
H0√

2

)1−n2/λ−imσ0

. (B 3b)

In order to evaluate ωmn at the wall, the amplitudes of Cmn and Dmn may be estimated
more explicitly if the fundamental frequency σ0 is low. In fact, for the Γ function of
a complex argument, it follows

|Γ (a + i b)| =

∞∏
k=0

|a + k|
|a + k + i b| |Γ (a)|, (B 4)

and as σ0 � 1, it becomes

Γ

(
1

2
+

n2

2λ
+ i

mσ0

2

)
∼

Γ
(

1
2

+ n2/2λ
)

√
1 + αnm2σ 2

0 /4
(B 5)

where

αn =

∞∑
k=0

1(
k + 1

2
+ n2/2λ

)2
.

Substitute these expressions into (B 3a), and expand the Γ function in terms of power
series of n2/λ and m2σ 2

0 up to the first order, then we have

|Cmn| ∼
|I2|Γ

(
1
2

+ n2/2λ
)

|I1|
√

2Γ
(

3
2

)√
1 + αm2σ 2

0 /4

(
H0√

2

)1−n2/λ

∼ |I2|
|I1|H

1−n2/λ
0

[
1 + a1

n2

λ

][
1 − αn m2

8
σ 2

0

]

∼ H0

[
1 + (a1 − lnH0)

n2

λ

][
1 − αn m2

8
σ 2

0

]
, (B 6)

where a1 = (ln 2 + γ )/2 and γ = 0.5772156 · · · is the Euler constant. The expression
for |Dmn| can be similarly obtained. Notice that the value of |I1|/|I2|, as mentioned
before, is slow-varying and of order one. For instance, in the limit of low frequency
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and large scale, i.e. σ0 → 0 and λ → ∞,

I1 ∼
√

πe

2

[
1 − erf

(√
2

2

)]
; I2 ∼

√
e

2
Ei

(
1, 1

2

)
(B 7)

where erf and Ei are the error function and exponential integral, we have therefore
|I2|/|I1| → 0.70378178 · · ·. To simplify the discussion, the dependence of I1/I2 on λ
and σ0 will be neglected, i.e. |I1|/|I2| is treated as a constant.
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